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Estimation of M ,  from Dilute Solution Viscosity 

A. RUDIN,* G. W. BENNETT,? and J. R. McLAREN,* 
University of Waterloo, Waterloo, Ontario, Canada 

Synopsis 
The viscosity-average molecular weight, M,, of a polymer is given operationally 

through its limiting viscosity number [q] and the Mark-Houwink equation [7] = KM.", 
where K and a are empirical constants. If [q] is measured under different conditions, a 
and M ,  will vary for the same sample. Mea is the a-order moment about the origin of 
the differential weight distribution of the polymer. Practically, the results of a series 
of M ,  measurements on the same polymer are equivalent to a cluster of fractional 
moments of the weight distribution, with orders between 0.55 and 0.80. It is shown 
that the first moment of this distribution, M,, may be estimated reliably by a straight- 
line plot of M.  against a extrapolated to a equals 1. This simple expedient is effective 
although there are probably no molecular weight distributions in which the relation is 
strictly linear and there are no mathematical distributions for which the a t h  root of the 
a t h  moment is a linear function of a for all a. The deviation from linearity is small 
enough, however, that the real curve can be represented by a straight line over a short 
range of a. Thus, M ,  can be measured accurately, but &In, M,, or the breadth of the 
distribution is not accessible by this method. Experimental and literature examples 
show that the precision of M ,  estimated by this method compares well with that of 
primary methods for measuring this molecular weight average. If a linear relationship 
is observed with reliable a values, this appears to be a sufficient condition for estimation 
of a valid M,. 

INTRODUCTION 

The viscosity-average molecular weight, M,, of a polymer is defined 
operationally through its limiting viscosity number, [q 1. Experimentally, 
[q J depends on the polymer type, solvent, and temperature and is related to 
M ,  through the Mark-Houwink expression: 

[q]  = KM,". (1) 

Here K and a are empirical constants which depend on the particular 
system, but are independent of the value of M ,  and the peculiarities of the 
molecular weight distribution. There are reasons1s2 to expect that these 
constants may not be valid over a very wide range of molecular weights, for 
a particular polymer. Nevertheless, the Mark-Houwink equation is known 
from experience to apply to many polymer-solvent combinations and the 
measurement of M ,  is a convenient, reliable procedure if K and a have 
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been determined with calibration samples that span a sufficiently wide 
molecular weight range. 

If the limiting viscosity number of a polymer is measured in different 
solvents or at different temperatures, the exponents a! will vary and so will 
the corresponding viscosity-average molecular weights. This paper 
describes the use of this variation to estimate the weight-average molecular 
weight of the polymer. 

Background 

Several ingenious attempts have been made to extend solution viscosity 
measurements beyond the immediate evaluation of M,. They are reviewed 
briefly below, as experience with these proposals is useful in judging the 
merits of the present method. 

In 1959, Onyon3 and Frisch and Lundberg4 suggested that an index of the 
breadth of the molecular weight distribution could be obtained from the ratio 
of viscosity-average molecular weights in two solvents. The polydispersity 
index chosen for comparison, was the Schulz parameter, which is usually 
taken as Mw/M,,  or M w / M n  - 1. This widely used parameter is related 
to the breadth of the number distribution and may be converted to the 
standard deviation, S,, of this distribution by 

In a subsequent paper, Lundberg, Hellman, and Frisch5 reported solution 
viscosity measurements on several polymers, from which it was concluded 
that the proposed viscometric polydispersity index was useful for character- 
izing whole polymers. The method is, of course, restricted to polymers for 
which the Mark-Houwink constants can be determined independently and 
excludes those in which the degree of branching may vary significantly from 
that in the calibration samples. 

This proposal has been criticized by Breitenbach6 and by Koningsveld and 
Tuijnman’ because the limited accuracy of viscometric methods and the 
restricted range of CY values make it difficult to estimate polydispersity 
accurately. The latter authors point out that a plot of [ q ]  against M ,  (if 
this datum is available) is a more sensitive indicator of distribution breadth 
than the viscometric index. 

Herdan8 has suggested the use of &Ig, alone or preferably in combination 
with one or more integral molecular weight averages, to estimate the 
shape of the cumulative distribution, using the Markoff inequality. The 
iwarkoff inequality estimates the most conservative distribution consistent 
with the available data, and this cannot be a very good substitute for the 
real distribution unless a large number of molecular weight averages are 
given. Herdan’s suggestion would appear, however, to represent a more 
efficient use oi‘ the data than the practice of quoting bald averages. 
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Statement of the Probiem 
The viscosity-average molecular weight is defined with reference to the 

parent molecular weight distribution as 

M ,  = [ZW,M,~]”~  = = [,u’,]l/u (3) 

where wt is the weight fraction of polymeric species with molecular weight 
M i ,  U‘ is a momeat of the distribution about the origin, the subscripts n and 
w refer to the number and weight distributions, respectively, and the 
subscripts a, a + 1, and 1 are moment orders. In  this case a is also equal 
to the Mark-Houwink exponent in eq. (1). 

When a = 1, M ,  coincides with the weight-average molecular weight, 
M,. It is not possible in practice, however, to measure M ,  directly by 
viscometric means. According to the theory of Flory and  FOX,^ the limits 
of a for a nondraining flexible polymer lie between 0.5 and 0.8. Although 
more recent theoretical studies suggest that the upper limit may be as high 
as 1.0 for polar polymers in good solvents12 the great majority of Mark- 
Houwink exponents for synthetic polymers do in fact lie in the range pre- 
dicted. The lower limit, 0.5, is characteristic of the Flory theta conditions, 
where the polymer is on the verge of precipitating. This is hardly con- 
venient for routine measurements, so that practically the range of accessible 
a values lies between about 0.55 and 0.80. 

Because of this restricted range and the limits of accuracy of viscometric 
methods it is possible to measure four, or perhaps five, distinct M ,  values 
by changing conditions to vary a. From eq. (3) one may derive a corre- 
sponding number of fractional moments about the origin of the weight distri- 
bution. The closest integral moment is the first moment, which equals M ,  
for a normalized distribution. We have chosen to attempt to estimate this 
value from the viscometric data. This differs from the work cited above in 
that we have not tried to reIate the experimental data to M ,  (equal to 
(wUto/roUt-l), in terms of moments of the weight distribution) or to the 
breadth of the number distribution. This choice avoids a long-range 
extrapolation with attendant inaccuracies. The problem then resolves into 
an estimate of the first moment of the differential weight distribution from 
a cluster of fractional moments with orders between 0.55 and 0.80. 

Estimation of 2Mw 

The problem stated above is solved simply. Evidence presented below 
shows that the plot of [,U’a]l’a (M,) against a can be represented 
reasonably by a straight line. Extrapolation of this line to CY = 1 yields 
w U ‘ ~  (M,) with a precision which appears to be comparable to that of light 
scattering measurements of this parameter. lo 

In  
fact, there are probably no molecular weight distributions in which the 
relation is strictly linear and there are no mathematical distributions for 

This simple expedient is without complete theoretical foundation. 
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Fig. 1. Schulz distribution. 

which (U'JlI" is a linear function of a for all a. The deviation from 
linearity is small enough, however, that the real curve can be represented by 
a straight line over a short range of a. 

As an example, we consider the Schulz distribution in the form 

where w(M) is the weight fraction with molecular weight M ,  and q and d 
are scaling constants. Table I lists [U'p]l la  for a between 0.5 and 0.9, at 
two sets of q and d. These data are plotted in Figure 1, where it can be 
seen that the relationship between [Ura]l'" and a is very close to linear 
over this short range of a. Extension of this procedure to estimate M ,  ["I or M ,  [g] is not possible because the relationship is no longer 

rOU'--l 
linear in the ranges - 1 5 a 2 0.5 and 1 2 a 5 2. It should be noted that 
the Schulz distribution function has been introduced here only to illustrate 
the proposed method. No implication is intended that actual distributions 
must conform to this function to be amenable to the present technique nor 
that polymers are described very well by this distribution. 

TABLE I 
Fractional Moments of Schulz Distribution 

Scalingconstants a = 0 . 5  01 = 0.6 a = 0.7 a = 0.8 a = 0.9 

p = 4,d = 1 3.751 3.807 3.850 3.900 3.951 
q = 8 , d  = 3 23.27 23.41 23.57 23.71 23.86 
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If a number of whole polymers are combined, M ,  of the mixture will be 
determined by the weight fraction of each component. The same depen- 
dence is shown by the limiting viscosity number of the mixture, since this 
parameter is the weight average of the limiting viscosity numbers of the 
components.ll Thus, if M ,  of each component can be estimated by the 
present linear extrapolation method, their combination will not upset this 
relationship. 

EXPERIMENTAL 

Four commercial polystyrenes were examined by the proposed method. 
The M ,  values for these polymers did not differ greatly, and it was of 
interest to see how precisely this molecular weight average could be esti- 
mated from viscometric data measured without unusual precautions. 

The molecular weight distribution of each sample was determined from 
gel permeation chromatography elution curves. A Waters Model 200 
chromatograph was used, with polystyrene gel packings of stated pore 
sizes lo7, los, lo4, and lo3 A. Chromatograms were run in tetrahydrofuran 
at  25"C, with solutions of 0.25 g polymer in 100 ml solvent. Distribution 

TABLE I1 
Molecular Weight Parameters of Polystyrenes8 

K1 K2 D8 K3 

M" 86,400 
M ,  240,900 

M* 1 912,800 
Number Distribution 

1.16 X 105 

MZ 559,200 

Standard deviation, S, 
Skewness, B, 4.89 
Kurtosis, K ,  38.36 
S J M ,  1.34 

Standard deviation, S, 
Skewness, B, 2.52 
Kurtosis, Kw 7.96 
S W / M W  1 .15  

Weight Distribution 
2.77 X 106 

99,400 
280,600 
563,000 
833,900 

1.34 X 106 
3.87 

22.33 
1 .35  

2.82 X 106 
1.92 
4.58 
1.00 

130,500 
315,900 
601 100 
892, OOO 

1.56 X 10' 
3.48 

18.38 
1.20 

3.00 X 106 
1.94 
4.54 
0.95 

103,500 
335, OOO 
725 800 

I, 069,000 

1.55 X l@ 
4.48 

29.03 
1.50 

3.62 X 106 
1.92 
4.14 
1.08 

a Symbols and terms are defined in the text. 

parameters were computed from the elution curves both without correction 
for imperfect resolution and using Tung's Hermite polynomial methodL2 to 
estimate this correction. Both methods of computation yielded values of 
M ,  which agreed closely, but the resolution correction appeared to over- 
emphasize the low molecular weight end in the more highly skewed poly- 
mers. M ,  values for the more highly skewed polymers, Kl,  K2, and K3, 
differed significantly by the two methods. The uncorrected data seemed 
to be more consistent with differences observed in the melt viscosities of 
these polymers, and these are the figures which are quoted here. 
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Table I1 lists parameters of the molecular weight distributions of the four 
polystyrenes. The standard deviation of the number or weight distribu- 
tion, S, or S,, is the square root of the second moment of the differential 
distribution about its mean. Equation (2)  expresses S, in terms of M ,  and 
M,. A similar equation, in M ,  and M,, applies to S,. The skewness of 
each distribution is estimated from the third moment about the mean. 
The skewness parameters, B, and B,, are normalized on the breadth of the 
distribution by dividing this third moment by the cube of the standard 
deviation. In terms of molecular weight averages, B, and B, are given by 

(5 )  
(M,M,M, - 3Mn2MW + 2Mn3) B, = 

(M,M, - 1cln2)3/2 

The kurtosis parameters, K ,  and K,, are relative measures of the “peaked- 
ness” of the differential number and weight distribution, respectively. 
That is, they reflect the relative steepness of the differential distribution 
curve in the neighborhood of the mode. The parameter is usually defined 
by 

K = (U4/S4) - 3 (7) 

where U4 (without a prime superscript) is the fourth moment of the appro- 
priate distribution about the mean, S4 is the fourth power of the corre- 
sponding standard deviation, and the number 3 is the value of UJS4 for a 
normd distribution. Application of the statistical shift-of-origin rule to 
eq. (7) produces the following expressions for K ,  and K,  in terms of 
molecular weight averages : 

(Mz+iMzMwMn - 4M2MwMn2 + 6MwMn3 - 3Mn‘) 
(MwMn - Mn2I2 K n  = - 3 (8) 

The background to these statistical parameters is given in statistics text- 
booksla and review arti~1es.l~ 

Viscometric measurements were made in Ubbelohde dilution viscom- 
eters. The solvent emux times were between 100 and 200 sec and the 
ratio of solvent/solution efflux times did not exceed 1.7. Solvents were 
reagent grade and were used without purification. Limiting viscosity 
numbers were calculated conventionally from linear least-squares fits to c 
(concentration) against (l/c) (In t/to) and (l/c) (t/h - l), where and t are 
the respective solvent and solution efflux times. The values reported are 
the means of these extrapolations, which coincided well. The conditions 
and results of these measurements are listed in Table 111. 
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TABLE I11 
Viscometric Data of Polystyrenes 

K l  K2 D8 K3 

Tetralin, 25°C 
a = 0.75 (ref. 5) 

[TI, dl/g 
M ,  

Toluene, 34OC 
a = 0.72 (ref. 15) 
[sl, dl/g 
Aft' 

Toluene, 25OC 
a = 0.69 (ref. 16) 

[TI, dl/g 
MS 

methanol (97.5/2.5), 25OC 

[dJ  dl/g 

Methyl ethyl ketone/ 

a = 0.62 (ref. 17) 

M. 
Methyl ethyl ketone, 25'C 
a = 0.58 (ref. 16) 

111, dl/g 
M ,  

0.785 
203,300 

0.761 
203,000 

0.7239 
181,900 

0.416 
187,300 

0.417 
167,100 

0.876 
235,300 

0.847 
235,000 

0.862 
234,400 

0.472 
229,200 

0.493 
223,100 

- 
- 

0.990 
292,000 

0.966 
276 , 300 

0.543 
288,000 

0.563 
280,000 

- 
- 

0.958 
279,000 

- 
- 

0.471 
229, OOO 

0.492 
222,200 

Figure 2 shows the plot of M ,  against a for each polymer and the least- 
squares line through each set of points. There is some scatter, but none of 
the patterns suggests anything other than a linear relationship. Table IV 
compares measured and estimated M ,  values. The measured and calcu- 
lated M ,  values agree to within 9% of the former figure for polystyrenes 

I , 

a 

Fig. 2. Estimate of M ,  of commercial polystyrenes K1, K2, D8, and K3. 
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TABLE IV 
Measured and Estimakd M ,  of Polystyrenes 

K1 K2 D8 K3 
~ 

M ,  (measured) 240,900 280,600 315,900 335,000 
M ,  (estimated) 250,600 254,500 295,700 396,000 
Slope of least- 

squares line (Fig. 2) 
x 10- 189.2 70.3 33.5 424 

K1, K2, and D8. The discrepancy is 18% of the measured value for 
sample K3, to which the fewest M ,  data apply. The estimations rank the 
polymers in the correct order despite the occasional inversion of order of 
M ,  measured in a particular solvent (compare D8 and K3). These results 
illustrate the value of obtaining as many distinct M ,  figures as possible. 
There is no evidence in these data that the viscometric method is appreci- 
ably less sensitive than primary methods for measuring M,. 

Previous workers4 have been forced to try to relate viscometric measure- 
ments to the breadth of the number distribution because data were not 
available to estimate the breadth of the differential weight distribution. 
Intuitively, however, one would expect differences in limiting viscosity 
number or related parameters to be more responsive to the influence of the 
weight distribution. The data for our four polystyrenes hint at this de- 
pendence, but the evidence is hardly compelling and the following observa- 
tions are recorded to stimulate further study rather than to suggest that a 
firm relationship has been established. The slopes of the linear least- 
squares lines in Figure 2 are recorded in Table IV. A plot of these slopes 
against the corresponding coefficient of variation of the weight distribution, 
S,/M,, is steeply linear for polymers K1, K2, and D8. The correlation 
does not hold for polymer K3, for which M ,  and probably the least-squares 
slope have been overestimated. No such relation is clearly evident be- 
tween these slopes and S,/M,. 

A correlation between the slopes of the leasbsquares lines and the breadth 
of the weight or number distributions is consistent with the properties of the 
Schulz distribution. Details are omitted here, since the connections be- 
tween a mathematical distribution and a polymer of undetermined distri- 
bution is of little a priori value. The relative sensitivity of this slope to the 
weight or number distribution is determined by the accuracy and nature of 
the viscometric technique rather than by the nature of the appropriate 
mathematical distribution function. 

Literature Values 
The proposed method was applied to the few studies we could locate in 

which M ,  and a number of M ,  values are recorded for the same polydis- 
perse sample. The data of Lundberg, Hellman, and Frisch6 are particularly 
useful in this respect. These measurements are summarized in Table V, 
along with M ,  figures calculated by a linear leaat-square fit to M ,  - a. 
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TABLE V 
Data of Lundberg, Hellman, and Frisch5 

M ,  M ,  
Temp, M .  (meas.) (calc.) 

Polymep Solvent “C (Y x 10” x 10- x 10-6 

PMMAI benzene 
toluene 
ethyl acetate 
butanone-isopropanol 
acetonitrile 

PMMA I1 benzene 
acetone 

PS I tetralin 
toluene 
butanone 

PS I1 tetralin 
toluene 
butanone 

25 0.76 0.98 1.79 1.57 
25 0.73 0.86 
20 0.64 0.74 
23 0.55 0.42 
30 0.50 1.12 
30 0.76 2.81 3.25 3.71 
30 0.71 2.62 
25 0.75 0.93 1.25 1.45 
25 0.69 0.82 
25 0.58 0.58 
25 0.75 0.23 0.239 0.250 
25 0.69 0.21 
25 0.58 0.21 

a Polymer nomenclature is that of the cited authors.& 

The agreement can be seen to be reasonably good, with the worst case being 
that of poly(methy1 methacrylate) PMMA 11, for which only two M ,  
values are given. We have not used these authors’ data for poly(isopr0- 
penyl acetate) because the measured M ,  figures are higher than the re- 
ported M,. Similarly, the acetonitrile M ,  datum for PMMA I in Table V 
is obviously unreliable and was not used to compute M,. 

0 t h  and Desreux” record M ,  figures for one sample of polystyrene in 
three binary solvent combinations. M ,  for this polymer (EF Brut) is 
given as 1.55 X lo6, from light scattering. The viscometric data of these 

I. 

(0 I. 

0 
x 1. 
> = I. 

I. 

I 

Mw = 1.635 x lo6- I 

/// 
Toluene- Methanol 

25 oc 

a5 0.6 0.8 I 
u 

0 

j 1.5 
I 

1.3 - I 1.0- 

I 
1 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I I I i  

0.5 0.6 0.8 1.0 0.5 0.6 0.8 1.0 
Q (I 

Fig. 3. Polystyrene EF Brut.17 
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authors are plotted in Figure 3, with least-squares lines through the experi- 
mental points. Toluene-methanol and butanone-methanol systems yield 
estimated M ,  values of 1.64 X lo6 and 1.65 X lofi, respectively. One 
datum in the latter system has been neglected because it is evidently off the 
line. The M ,  data for chloroform-methanol, also shown in Figure 3, are so 
badly scattered that a linear fit is not worthwhile. 

Stivala, Valles, and Levil* report three M ,  figures for a sample of poly- 
(butene-l) with M ,  270,000. A linear fit to the M ,  figures yields an 
estimated M ,  of 410,000. This discrepancy may perhaps be excused by 
noting that the reported M ,  is less than either of the two highest M ,  
figures, which should correspond to lower moments of the weight distribu- 
tion. 

CONCLUSIONS 
While all the examples available seem to exhibit a linear relationship 

between M ,  and a, it is not unlikely that there may be polymers which do 
not. We do not suggest that the proposed method will be universally 
applicable. It seems reasonable to assume, however, that if a linear rela- 
tionship is observed with reliable a values, this is a sufficient condition for 
estimation of a valid M,. In doubtful cases it may be advisable to quote 
confidence limits on M ,  from conventional statistical methods assuming a 
linear relationship and no error in a. 

The same precautions which apply to determination of M ,  are, of course, 
necessary in estimating M,. The Mark-Houwink equation must be 
known to apply in the molecular weight range of interest. The constants 
are preferably determined against hl, of sharp fractions and the unknown 
and calibration samples should have the same degree of branching. 

It is of interest also to compare M ,  values estimated by the present 
method with those which would be given by the practice of simply equating 
M ,  to M,. In some cases, where the slope of the least-squares line is 
shallow, there is evidently little gain from the new technique. Examples 
are K2 and D8. In other cases, however, the M ,  value at the highest 
recorded a value is a very poor estimate of M,. The data for PMMA 
I, PMMA 11, and EF Brut in methanol-butanone are striking examples. 
Thus the present method appears to be considerably more reliable in 
its application to polymers with unknown molecular weight distributions. 

The authors wish to thank the National Research Council of Canada for financial 
aid, R. Y.-M. Huang for use of gel permeqtion apparatus and computer program, and 
K. K. Chee for several of the limiting viscosity number determinations. This report is 
based on a paper presented at the Fifteenth Canadian High Polymer Forum, Kingston, 
Canada, 1969. 
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